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Abstract: The atom-dipole interaction (ADI) model for molecular optical properties has been extended to provide a generally 
applicable method for computation of Raman optical activity parameters. This model requires only a minimum number of pa­
rameters, i.e., atomic polarizabilities and their derivatives in Cartesian space, which are transferable among similar molecules. 
Optimization of these parameters from experimental Raman scattering parameters is discussed. The resultant parameters are 
then incorporated into the ADI model to formulate the tensors necessary for computing the Raman circular intensity differen­
tials for all the fundamental vibrations of any general molecule. Thus, for the first time, a means of directly correlating molecu­
lar structural features with observed Raman optical activity is available to guide experimental observation. 

Introduction 
The potential for vibrational optical activity (VOA) to 

provide unique information about the intricate details of mo­
lecular stereochemistry has fostered widespread interest in the 
phenomenon. Raman optical activity1'2 (ROA) was predicted 
by Barron and Buckingham3'4 and subsequently observed by 
several groups.5 I6 Complementary developments in infrared 
vibrational circular dichroism (VCD) have also oc­
curred.17-31 

Realization of the full potential of VOA requires that some 
direct means be available to correlate the structural features 
and internal dynamics of molecules (absolute configurations, 
skeletal conformations, functional groups, and vibrational 
modes) with signs and magnitudes of the chiroptical param­
eters as measured by ROA or VCD. For VCD, models have 
been developed to compute the rotatory strength of a vibra­
tional transition in the infrared. Models using a fixed point 
charge approximation,1822'30 a polar tensor formalism,30 or 
coupled oscillator interactions28'32 have been utilized with 
varying degrees of success. For ROA, however, no generally 
applicable models have been available to predict the signs and 
magnitudes of the circular intensity differentials (CIDs). The 
general expressions' -2 for the Raman CID are of limited utility 
as such since a priori knowledge of several polarizability de­
rivative components is required. Practical application of the 
ROA two-group model is1'2-33 limited to identical groups and 
even then it does not distinguish among the several types of 
vibrational motion. Furthermore, lack of knowledge of the 
magnitude of the many pairwise interactions required for 
general application precludes its use with the majority of 
structures of interest. 

Here we describe an inherently general method for com­
putation of the sign and magnitude of the Raman CID for any 
vibrational mode of an arbitrary molecule. Thus, a powerful 
yet practical means is now available for correlation of struc-
tural/stereochemical features with observed Raman optical 
activity. 

An examination of viable models for other chiroptical 
phenomena suggests the utility of casting any description of 
ROA in terms of the properties and interactions of subunits 
of the molecule. For molar rotation,34"38 atomic refractivities 
(or polarizabilities) are useful parameters, whereas for VCD, 
net atomic charges (or atomic polar tensors)1830 have been 
utilized. Raman scattering is a manifestation of the changes 
in the molecular polarizability ellipsoid which can be expressed 
as a function of the corresponding atomic or bond polarizability 

i Depiirimcni ofChcmisiry. Syracuse University. Syracuse. N.Y, 13210. 

ellipsoids. Use of bond polarizabilities and their derivatives 
presents practical difficulties because of the necessity of 
specifying their three different components. If, on the other 
hand, atomic polarizabilities of spherical symmetry are uti­
lized, any anisotropy of the molecular polarizability ellipsoid 
can be introduced through interatomic interactions via a 
suitable function. Therefore, it seems that the most direct path 
to a useful computational model for ROA is adoption of an 
atomic parameter, namely, the atomic polarizability derivative 
tensor. 

Fortunately, the basic framework of this approach is 
available in the atom-dipole interaction (ADI) model as de­
veloped by Applequist and co-workers.36~40 In this model, the 
nonspherical molecular polarizability tensor is obtained from 
spherical atomic polarizabilities and the dipolar interactions 
between atoms. Optimized atomic polarizabilities (for 5893 
A), which are transferable among molecules for prediction of 
molecular polarizability, have been reported.39 Calculation 
of the optical rotatory power of a molecule from atomic po­
larizabilities and molecular structure via the ADI model is 
practical and remarkably reliable.36"38 A further extension of 
this model shows that the molecular polarizability derivative 
tensors required for prediction of Raman scattering parameters 
can be obtained, provided that a knowledge of certain atomic 
polarizability derivatives is available.40'41 As a corollary, 
knowledge of Raman scattering parameters should provide the 
necessary atomic polarizability derivative tensor values; ap­
propriate manipulation of these tensors will yield individual 
values of the molecular polarizability derivative tensors. In 
addition to the latter tensor, the gyration tensor and the tensor 
describing the induced quadrupole moment are essential for 
prediction of Raman CIDs;1-2 each of these tensors can be 
evaluated via the ADI model. 

The remarkable utility of the ADI model for Raman CID 
prediction is further substantiated by other considerations. (1) 
The ADI model is inherently a completely general model40 that 
is not restricted to a small class of molecular structures. (2) The 
ADI model is the only available sophisticated description of 
molecular polarizability which has been sufficiently well 
elaborated theoretically to provide the parameters required 
for computation of chirality-related properties.36"38 The in­
teractions giving rise to these chiroptical properties are inherent 
in the model. (3) Numerical computation using established 
procedures and optimized empirical parameters is straight­
forward. Simplification using partial structures and numerical 
differentiation is readily accommodated if proven reliable. 

We have combined the ADI formalism with the classical 
scattering description of ROA due to Barron and Bucking­
ham.2 Specifically, we use the ClD expressions derived by 
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Barron and Buckingham2 and evaluate the parameters therein 
via the A D I model. He re we describe the details of this ap­
proach; applications to bromochlorof luoromethane 4 2 and to 
several molecular segments are presented in separa te pa­
pers. 

Circular Intensity Differentials 

Since this report describes the first effort to compute Raman 
circular intensity differentials, it is appropr ia te to cast the 
problem in a general form which illustrates tha t the R a m a n 
C I D is another manifestation of optical activity. Thus we feel 
it necessary to follow a basic outline of the theory of optical 
ac t iv i ty . 4 3 - 4 6 W e use SI units throughout this development. 

The ordinary effects of an electric field, E, in a highly dilute, 
t r ansparen t medium can be described by a linear expres­
sion: 

Me = OtE (1) 

where /te is the induced electric moment and a is the polariz-
ability tensor. In an optically active medium, the applied 
electric field vector is rotated by the chiral molecule, producing 
new microscopic effects. These effects are easily accommo­
da ted by use of the curl of a vector q u a n t i t y . 4 3 4 4 Thus , eq 1 
becomes 

He = CtE+ (3V XE (2) 
where /3 is the rotatory polarizabili ty tensor. 

Dependence of the induced moment on the electric field 
component that is rotated by the chiral par t of the molecule 
requires the molecule to also exhibit a nonvanishing magnetic 
moment , j * m : 

Mm = « H + / 3 , V X f / (3) 

Here H is the internal magnetic field vector, 5 is the magnetic 
polarizability tensor which vanishes in nonmagnetic sub­
stances, and /Si is a polarizability tensor similar 0 in eq. 2. 
Application of Maxwell's laws, assuming a nonmagnetic and 
nonconducting medium, permits transformation for eq 2 and 
3: 

Me = « E - / 3 B (4) 

Mm = «001 £ (5) 

where B is the magnetic flux, e is the dielectric constant, and 
eo is the permittivity of free space. 

If the complex field vectors of the incident light beam 
(propagating along the z axis) are described as 

E = E ° e x p [ - u o ( / - z / c ) ] (6) 

B = B ° e x p [ - / w ( / - z / c ) ] (7) 

eq 4 and 5 can be rewritten in terms of the amplitudes of the 
field oscillations:2 

/Ue = aE° + GB° (8) 

and 

Mm = G E ° (9) 

where 

G = /o>/3 = -iwetofci (10) 

The quant i ty G is the gyration tensor and the mean of the 
tensor /3 is related directly to the optical rotat ion.4 6 Al though 
the induced quadrupole moment makes no major contribution 
to electronic optical activity in fluids, it does contribute to that 
of ordered arrays and to the Raman optical activity of fluids.3 

Thus eq 8 becomes 2 

Mo = aE° + GB° + V3AVE (11) 

where A represents the tensor for the induced quadrupole 
moment and VE is the gradient of the applied field. 

The intensity and polarization properties of any mono­
chromat ic light beam are most conveniently described by the 
Stokes vector;4 3 '4 7 the components of the Stokes vector are 
directly related to the total intensity, / , the degree of polar­
ization, P, the az imuthal angle, 6, and the ellipticity, i\, of the 
polarization ellipse. T h e ellipticity, % takes on the values 7r/4 
and —TT/4 for right and left circularly polarized light, respec­
tively, and zero for linearly polarized light. Since scattered 
radiat ion is regarded as having been emitted by the induced 
multipole moments, the properties (/, P, 0, J?) of the scattered 
light can be related to those of the incident light through the 
induced moments . Barron and Buckingham,2 using the Stokes 
formalism, have derived expressions for the intensity of light 
scat tered a t 90° by the mult ipole moments in eq 11. In Car ­
tesian tensor notation the scattered intensity components , 4 8 

polarized perpendicular (s) and parallel (p) to the scattering 
plane, a r e 2 

h = — [{7aai)aap + aaaafjn) 

+ («„#««£ + 3aanaii(j) P cos 2?? cos 20 + 

2/c(7aaf)Ga/3 + aaaG/jff + ' / W a ^ e ^ / l - y ^ P sin 2?j] (12) 

/ p = K[(3aapanlj + a„„a/^) + 2/c(3a„/jGKlj - aa„G^ 
- l/2uaaf}eay5Ayilj)P sin 2TJ] (13) 

Here «„#, Gap, and A7^ are the elements of the tensors a, G, 
and A in eq 11, and A" is a constant characteristic of the incident 
light. These equations apply equally well to Raman scattering 
if a, G, and A are replaced by the corresponding normal 
coordinate derivatives a' (da/dQ), G' (dG/dQ), and A' 
(dA/dg ) . 2 The Raman optical activity is then described by 
a normalized circular intensity differential (CID):2 

A = /R - / L / / R + /L (1 4) 

where / R and 1L represent the scattered intensity for right (t] 
= ir/4) and left (77 = -7r/4) circularly polarized incident light. 
Thus the Raman CIDs, expressed in terms of the normal 
coordinate derivatives of the multipole moments, are given 
by2 

A / / i \ _ 1{7a'„,jG'„0 + ot'gqG'iijj + l/3<t>ot'„ijeaysA'y6ij) 

C(Ia x^a A|U + a XA« nn) 

(15) 

A lr. s. _ 2(3a'„. fjG',^ - a'cmG'ptJ - ]htt}a'aiit„ysA'ysij) 

c{iot \„a x>, - a x x « ^) 

(16) 

By substi tuting eq 10 and dropping the imaginary term /, eq 
15 and 16 become 

A(O)= 4T la'"^'"ti + a''-»fi'M + ]ha\,ijt»y6A'ySii 

"Ac lot X1^Ot v + a x\a ^ 

(17) 

Ap(Qk) - -T 7—,—; ; — ; 
«AC 3a xMa xM

 _ « xx« MM 
(18) 

Here /?'(Vtj a re the elements of the derivative tensor d/3/dQf,, 
Xc is the wavelength of the exciting monochromatic radiation, 
and n is the refractive index of the medium. From eq 17 and 
18 it can be seen that the individual elements of the derivative 
tensors a ' , 0 ' , and A' are necessary for evaluation of R a m a n 
C l D s . We find that these quanti t ies can be obtained from the 
ADI model; in the following section we outline the process. 
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The ADI Model and Its Extension to ROA 

In the ADI model, interactions among spherical atomic 
polarizabilities, a,, are assumed to be dipolar in form.39'40 With 
such interactions the effective field at atom / is different from 
the applied field, £,-, at atom i. Accordingly, the induced 
electric moment, /t/, is described by39 

modified as follows: 

ai\Ei - E T , 7 ^ (19) 

Here Ty is the dipolar interaction function given as follows. 

(20) ij ^iJ ij ^iJ ^U 

.39 Equation 19 can be rearranged to the following form 

Cn=E (21) 
where C, a matrix containing NXN tensors each of 3 X 3 size, 
has the following form: 

'a\~[ T|2 - - - T I A 

T2, « r ' - - - T , , 

.T.Yi' • ' " a,\~ 

Equation 21 can be written as 

M = BE (23) 

where B, the inverse of the C matrix, is known as the relay 
tensor matrix.39 The induced electric moments in the molecule 
can be expressed as a linear sum of the induced electric mo­
ments on atoms. Therefore, 

Mmoi = I Mi = E E B 0 E = a m o i £ (24) 
' i J 

where molecular and atomic polarizabilities are obtained as 

i J 

a, = E B,j 

(25) 

(26) 

This equation permits evaluation of the individual elements 
of the molecular polarizability tensor from a knowledge of 
spherical atomic polarizabilities and the molecular geome­
try.39 

The utility of the ADI model for ROA calculations arises 
from the possibility of casting the rotatory polarizability tensor, 
B, and the quadrupole polarizability tensor, A, in terms of the 
relay tensor matrix, B. 

The scalar rotatory parameter, B, which is the mean of the 
tensor 8, has been shown to be36 

£ = ' / 6 A E E ru.bu (27) 
/=i j=i+\ 

where by is a vector with components (fl,yr> - B,j>':, 5,7
 vr — 

Bjj:x, B,j>'x - Bjjx>). Here, for instance, B,/^' represents an 
element of the third row and second column in the tensor be­
tween atoms /' andj of the relay tensor matrix B. By extending 
the principle which underlies eq 27, the tensor /3 can be for­
mulated as 

B = V2 E 
/V 

E rb,, (28) 
i = i J = I + i 

where rb is the dyadic formulated from the vectors r,y and 
b,j. 

At this point it is necessary to recognize that /3 as formulated 
in eq 28 is origin independent. However, since the magnetic 
moment is origin dependent, it is essential to incorporate this 
character into the /3 tensor (this was pointed out to us by Dr. 
L. D. Barron). The elements of the /3 tensor are, therefore, 

PaU ~* fiafi — V2CfJyS E riyaia& (29) 

where «is a two-valued Levi-Civita density function. In other 
words, eq 28 becomes 

B=1Z2 

N-1 /V 

E E rb,7 
1 = 1 j = ; + l 

/V S^^S 1 
- E (n x a,) 

/ 
(30) 

where the tilde denotes the transpose; the atomic polarizability 
tensor can be obtained from eq 26. 

The induced quadrupolar contributions to the ROA are 
obtained in a similar fashion by adaptation of the ADI model. 
Applequist40 has shown that the molecular quadrupole po­
larizability, A, is related to the relay tensor matrix B through 
the equation 

A = E(3 /2r ;B,7 + 3 / 2 r ?B , , - I r / . 5 , 7 ) (31) 

Owing to the origin dependence of the quadrupole moment, 
it has been shown that the elements of the A tensor should be 
modified1 as follows: 

:»#7 ' • Aaiiy + 3/2 I>/ti«i«7 

/V N 
+ 3Il E 'lyOC/aH ~ E faaiaydfjy ( 3 2 ) 

/ / 
where 5 is the Kronecker 5. 

Thus it is apparent that eq 25-32 offer a particularly pow­
erful means of evaluating the tensors a, B, and A which are 
required for computing the scattered intensity components 
described by eq 12 and 13. Computation of the Raman CIDs 
(eq 17 and 18) requires evaluation of the normal coordinate 
derivatives of each of these tensors. From eq 25 

"moi = d«moi/«>e* = dB/dQk = - B C B (33) 

where C is the normal coordinate derivative of the matrix C 
in eq 22. Similarly, from eq 30 

B' = dB/dQk = V2 ' E ' E (Vb1J + rb,/) 
L/=i j=i+\ 

-t(r7><&i)-i(rTx&/) (34) 

Likewise, a lengthy yet simple expression for the normal 
coordinate derivatives of A can be obtained directly from eq 
31 and 32. 

Optimization of Atomic Polarizability Derivative Tensors 

Evaluation of the individual elements of the a', 8', and A' 
tensors (cf. eq 25-34) needs to be discussed in some detail. The 
derivative of C (eq 21 and 22) is required and represented 
by40-41 

C =dC/dQ 

T'21 

L r , vi 

T',2 

- O 2
- 2 V ^ a 2 

T ' 
I /Vl 

T',,v 
T2,v 

- a , v - 2 V « a , v . 

(35) 

where V^a, represents the derivative of a,- with respect to 
normal coordinates, Qk. The off-diagonal tensors T0 in the 
C matrix, obtained by differentiating eq 20 with respect to the 
normal coordinates, Qk, involve the terms dr,j/dQk which are 
obtained from 

dr,j/dQ = ADL (36) 

Here A is a row matrix with +1 in column j , - 1 in column /', 
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and zero in all other locations; D is the inverse of the familiar 
Wilson B matrix49 which is constructed from s-vectors; and L 
is the eigenvector matrix of the vibrational secular equation. 
While the evaluation ofT'y does not involve any approxima­
tions (except those inherent in the normal coordinate analysis), 
an evaluation of the diagonal tensors of the C matrix does 
require an approximation. The diagonal tensors of the C 
matrix are represented as follows. 

-Ot, 2 V Q O ; = 

-ar2 

sym 

O 
. -2 

O 

O 

{*<*,**/bQk) {ben"*-/Z>Qk) (dar^/dQk) 

(daiyy/dQk) (dar^/dQk) 

sym (dai::/dQk) 

(37) 

In the context of the ADI model, the elements dajSg'/dQk for 
g 7* g' can be considered to arise from the interaction function 
T'ij and as such are already included in eq 33. Therefore, in eq 
37 the off-diagonal elements daigx'/dQk have zero values. The 
remaining nonvanishing normal coordinate derivatives 
daigg/dQk are related to the internal coordinate derivatives 
by 

Sa,*«lbQk = £ dai**/dR, • L1, (38) 

where Ri represents the /th internal coordinate and L\k rep­
resents the elements of the L matrix as used in eq 36. A 
knowledge of these da^ jdQk parameters is necessary to 
obtain the a', /3', and A' tensors, but there is no a priori source 
which can provide their values. 

Applequist and Quicksall41 have used experimental Raman 
intensities in an attempt to obtain optimized values for 
daixg/dQk in a series which included methane and several 
halomethanes. Such an optimization procedure includes the 
evaluation of Raman scattering parameters from eq 33 with 
trial values of doci/dR/. The appropriate Raman scattering 
parameters are the mean derivative a'mo\ and the anisotropy 
y'2 or the depolarization ratio p for all Raman active modes 
of the molecule: 

«'mol = 'Ma'mol-™' + a'tnol-1'"1' + a 'mol" ) 

Y2 = V2 |(a'mo,-™ - a'mo,''->')2 

+ (a'mo]yy - a'm0|----)
2 + (« 'moi" - a 'moi")2 

+ 6 [ (a ' m 0 i ^ ) 2 + ( « W - - ) 2 + ( a W - - ) 2 ] ) (39) 

P = 3 7 ' 2 / (45« 'm o , + 47 '2) 

The differences between calculated and experimental values 
of these parameters are used to modify the trial values of 
dai/dRj until the calculated and the observed Raman scat­
tering parameters are found to be in good agreement. The re­
sultant doij/dR/ values are assumed to be good approximations 
of the true values if they predict the observed quantities rea­
sonably well. 

In this optimization process, however, the number of vari­
ables is generally larger than the number of experimental ob-
servables available. Applequist and Quicksall41 incorporated 
the following approximations to accommodate this situa­
tion. 

(1) The parameters da,*''?/dft/ for g = x, y, and z are as­
sumed to be equal so that each internal coordinate derivative 
tensor, da , /d/? / , is represented by a single scalar quantity 
da,/d/?/. As a result, the diagonal values Ha1-M/dQk j n eq 37 
are degenerate. 

(2) The parameters da , /d/? / are assumed to vanish unless 

the internal coordinate, Ri, represents a stretching coordinate 
containing atom /. 

(3) The nonvanishing da,/dR/ values for an atom /' are 
assumed to remain independent of the environment, i.e., the 
dai/dR/ parameters are transferable in a series of similar 
molecules. These approximations reduce the number of 
da , /d/? / parameters to a considerable extent. For example, 
with a molecule such as HCBrCl F, these approximations re­
duce the procedure to optimization of only five parameters, 
namely, dan/d/?c-H> da^/dRc-F^ dac\/dRc-c\> 
d<XBT/dRc~Br, and dac/dR, instead of 150. Applequist and 
Quicksall41 have optimized these five parameters using ex­
perimental Raman intensities of 29 symmetric modes in 
methane and several halomethanes. 

Although approximations are unavoidable if the number of 
variables is to be reduced to a manageable size, sound justifi­
cation for such approximations is required. One consequence 
of this particular set of approximations is the ambiguous nature 
of the internal coordinate derivative of the polarizability for 
the central atom, e.g., dac/dR in substituted methanes. Since 
the carbon atom is bonded to different types of atoms in 
halomethanes, assignment of only one parameter, dac/dR, 
to the carbon atom is ambiguous. This ambiguity would vanish 
if optimization of the independent values of dac/dR for all 
bonds to carbon were carried out. However, since such deriv­
atives are dependent on the inherently different electrostatic 
interactions which prevail in each molecule, it is highly 
doubtful that such derivatives have the same values in a series 
of molecules such as the substituted methanes. Since these 
particular approximations appear to degrade the transferability 
of the polarizability derivatives, they are not really suitable for 
use with the ADI model. We present an alternate procedure 
which not only preserves parameter transferability but also 
capitalizes on the interaction feature of the ADI model. 

Some molecular properties when expressed in Cartesian 
space are consistently found to be fairly independent of the 
environment. For instance, atomic force constants50 and atomic 
polar tensors,51 which are Cartesian derivatives of the molec­
ular potential energy and the electric moment, respectively, 
have been shown to be transferable, to some extent, among 
similar molecules. If the Cartesian derivatives of the molecular 
potential energy and electric moment were further reduced to 
the Cartesian derivatives of the corresponding atomic contri­
butions, the latter parameters unambiguously become char­
acteristic of the atoms and remain independent of the envi­
ronment. With respect to molecular polarizability, the ADI 
model permits reduction of the molecular polarizability as well 
as its derivatives to atomic polarizability components and also 
incorporates the interatomic interactions through a reasonable 
interaction function. Therefore, the Cartesian derivative ten­
sors of atomic polarizability would certainly be characteristic 
of the atoms and transferable within a series of molecules. 

Accordingly, we assume that each atom in a vibrating 
molecule has a characteristic Cartesian polarizability deriv­
ative tensor V va,, as defined in 

~ da, ™ day™' da,1 

V.v a, = 

dxi 

da/-1'1 

dXi 

da,-" 

by, 

d«/• ' ' • ' ' 

dy, 

da,-"-" 

dx, dyi 

dzi 

da,'-' 

dzi 

da,-"-" 
dz, J 

(40) 

where Vya, represents the derivative of a, with respect to the 
Cartesian coordinates X. Then the derivatives V^a, required 
in eq 33 and 35 can be expressed in terms of the V Ya, ten­
sors: 

V^a/ = V Y a/D L (41) 
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where D and L are as defined in eq 36. In reality, the derivative 
of an atomic polarizability tensor with respect to the Cartesian 
coordinates yields a higher order tensor than shown in eq 40. 
The simplified form of eq 40 results from our extension of some 
of the constraints of the ADI model. (1) Terms such as 
dcxj/dXj, where Xj represents the position vector of atom j , 
vanish for;' ¥" j . These terms vanish since changes in atomic 
polarizability caused by neighboring atom displacements from 
equilibrium positions are presumed to arise only through 
changes in the dipolar interaction function, Such effects are 
automatically incorporated in the T'y terms in eq 35. (2) Terms 
such as d<Xjsg'/dXi for g ^ g' are also incorporated into the 
dipolar interactions, so as to be consistent with the basic 
framework of the ADI model. These constraints, thereby, 
become an integral part of the framework of the ADI model 
as applied to the vibrational problem; they are expressed 
mathematically as 

doti/dXj = da,«' /d Xj • Sg? • bij (42) 

where 5 is Kronecker 8. 
It is now appropriate to examine the optimization procedures 

in further detail. Applequist and Quicksall41 made the ap­
proximation that daixx/dQk, da^/dQ*, and da,zz/bQk (eq 
37) for any &th normal coordinate are degenerate. This ap­
proximation implies that all elements in each column of the 
tensor V* a/ (eq 40) are equal. Consequently, unit displace­
ment of atom / in the x direction, for example, would produce 
a uniform change in its polarizability sphere in all three di­
rections. In other words, the atomic polarizability would retain 
its spherical symmetry during atomic displacements. This, 
however, is a gross approximation because there are several 
factors which distort the atomic polarizability sphere during 
molecular vibrations. In the ADI model, some of these effects 
are taken into account through the normal coordinate deriv­
ative of the dipolar interaction function, T'y. Effects which are 
not incorporated into T'y include incoherent displacements of 
a nucleus with its associated polarizability and charge reor­
ganization in various parts of the molecule. The ADI model, 
and for that matter any classical model, does not take cogni­
zance of these effects because, in a classical description of 
molecular vibrations, a molecule is considered to consist of rigid 
atoms where the interactions among electrons on different 
atoms are ignored. In a quantum mechanical picture, during 
a molecular vibration the changes in overlap of atomic orbitals 
result in changes in population densities of electrons. These 
effects result in the so-called "nonfoUowing" contributions52 

to the polarizability sphere. Such effects on the electric mo­
ment have been well discussed in the literature.53 Although 
explicit inclusion of nonfoUowing contributions in a classical 
model is not practical, these effects could be incorporated in 
a gross sense, either by introducing new constraints or by re­
moving some of the constraints present in the model. For ex­
ample, in the present situation we could introduce an approx­
imation to this type of an effect by not requiring the elements 
in each column of the tensor VA-a, to be equal. This procedure 
would ensure that during atomic displacements the atomic 
polarizability sphere would be distorted, hopefully, by an 
amount equivalent to that due to the nonfoUowing effects. As 
a result the terms ba^JbQk forg = x,y, and z would not be 
degenerate. 

We suggest that the optimization of the Vx«/ tensors is 
more advantageous than optimization of da/fdR/ values be­
cause not only are the V^a, tensors more prone to be trans­
ferable but no problematical approximations are involved. It 
is apparent that the constraints involved in formulating the 
VxO/ tensor, in eq 40, are introduced as an integral part of the 
basic framework of the ADI model, and do not constitute a 
separate set of approximations. Moreover, as seen from eq 41, 

the complete set of doti/dR/ values can also be obtained from 
the optimized Vxa/ tensors. 

The utility of our proposed procedure now depends on re­
solving the problem of the number of variables in the optimi­
zation process. As an example, for HCBrClF, we need to 
construct a Vx«/ tensor for each of the five atoms. Since each 
such tensor requires nine independent parameters, a total of 
45 parameters needs to be optimized from experimental 
Raman scattering parameters. If "nonfoUowing" contributions 
are ignored, only three parameters are required to define the 
complete tensor for each atom so that only 15 parameters 
would need to be optimized for HCBrClF. 

The optimized tensors which predict a consistent set of 
Raman scattering parameters close to the experimental values 
can be considered as being close to the true ones. The final set 
of these polarizability derivative tensors permits the evaluation 
(cf. eq 25-34) of the tensors a', #', and A'. Thus the parameters 
required for computation of Raman CIDs (eq 17 and 18) can 
be obtained through an ADI model using measured Raman 
intensities and depolarization ratios for the molecule of in­
terest. 

Discussion 
When considering application of this ADI model to the 

computation of the Raman CIDs in an arbitrary chiral mole­
cule, it is apparent that several practical limitations will prevail 
if additional simplifications are not introduced. First of all, a 
comprehensive normal coordinate analysis is required. Since 
molecules of interest to ROA are of Cn, Dn, T, O, or / sym­
metry, reliable vibrational analyses are quite difficult. Al­
though some progress has been made in empirically optimizing 
the molecular force field of simple molecules using vibrational 
band contours and intensities,54 such techniques are not 
practical with the terpenes,5 camphors,8'13 phenyl-substituted 
ethanes,6-7'9-10'12 aryl sulfoxides,15 or tartaric acid derivatives16 

where Raman CIDs have been observed. A utilitarian ap­
proach which consists of treating simple model molecules and 
using the results in a semiquantitative fashion with more 
complex molecules by assuming perturbed group modes, 
completely transferable force constants, and/or kinematic 
coordinates may be the only way out of this dilemma. Since the 
computation of Raman CIDs will become less reliable if the 
normal coordinates are ill defined, it appears that this factor 
is likely to be the major limitation to effective employment of 
this model or any other model for VOA in general. 

A second difficulty is encountered in optimization of the 
Cartesian derivative tensors of atomic polarizability, Vxa/. 
This optimization depends largely on our assumption of 
transferability of atomic polarizabilities and their Cartesian 
derivatives among similar molecules. A reasonable degree of 
transferability in atomic polarizabilities has been demonstrated 
by their utility in prediction of molecular polarizability and 
molar rotation. Unfortunately, however, there are several types 
of atoms, most noticeably S and C (unsaturated), for which 
ADI optimized atomic polarizabilities are not presently 
available. For the Vxa,- tensors, the situation is more complex, 
however, since accurate experimental values of Raman in­
tensities and depolarization ratios are required for optimiza­
tion. Except for a few small molecules there are few reliable 
data on Raman scattering parameters in the literature and, 
moreover, acquisition of such data for most chiral molecules 
would be a formidable task. Reliance on transferability for 
Cartesian derivative tensors from simple molecules to complex 
ones must be adopted. It should be remembered, however, that 
the optimization of transferable Vxa/ tensors from limited 
experimental data may not be unique. The only solution to this 
problem is to undertake a systematic measurement of Raman 
intensities and optimization of these tensors in a large series 
of simple chemically similar molecules. 
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It is appropriate to inquire about the reliability of the 
computed Raman CIDs in the event that all the necessary 
parameters are available. Although resort to comparison with 
experimental observation is the only means of really answering 
such a query, some insight into the situation can be gained by 
consideration of the inherent capacities of the model. Even 
though the ADI model assumes spherically symmetrical 
atomic polarizabilities, the intramolecular interactions are 
reasonably well represented by the dipolar interactions between 
all pairs of atomic polarizability spheres. Such a representation 
might appear crude from a quantum mechanical viewpoint but 
is quite reasonable classically. A major difficulty, however, is 
incorporation of the /ntermolecular interactions. The model, 
as developed, assumes the molecule to be free except for the 
gross medium dependence of refractive index. The small 
magnitude of Raman CIDs, however, requires that measure­
ments be made on condensed phases where intermolecular 
interactions are not negligible. Thus incorporation of macro­
scopic medium effects will be required for detailed comparison 
of computed CIDs with observed values. It is not clear as to 
how such effects are most effectively accommodated since a 
simple Lorentz factor or other similar parameter is not likely 
to be sufficient. Hopefully, such effects will be minor in some 
cases at least and simple consideration of the array of molec­
ular geometric possibilities will be adequate for comparison 
with experiment. 

After consideration of these factors, the prospects of 
applying the complete ADI treatment to very many molecules 
do not appear very practical. Thus a much more approximate 
approach would seem to have considerable utility. If the nec­
essary atomic polarizabilities and a molecular structure are 
available, a numerical evaluation of the a', 0', and A' tensors 
can be carried out where the normal vibration is simulated by 
a suitable distortion of the structure of the molecule or mo­
lecular segment. Calculation of the Raman CIDs then involves 
computation of a, ft, and A tensors for equilibrium and for 
distorted configurations and numerical evaluation of the 
gradients of the resultant tensors. This procedure avoids a 
priori knowledge of the normal coordinates and the V*ex­
tensors but the resultant CIDs can be only qualitative, at best. 
By sacrificing accuracy and, to some extent, reliability as well, 
the computations can easily be extended to any large molecule 
wherein the atomic polarizabilities are known. The results of 
the numerical method, although qualitative in nature, should 
be more reliable and more generally applicable than those for 
a simple two-group model. A direct comparison of the results 
of the complete analytical procedure with those of the nu­
merical procedure is worthwhile. If a correspondence indeed 
exists, the numerical procedure will become quite useful be­
cause it can be extended to large molecules fairly easily. 
Treatment of large molecules of biological significance may 
even be practical. 

In the subsequent article, the results of application of the 
analytical procedure are presented for HCBrClF and 
DCBrClF. The utility of the numerical procedure is under 
active investigation and will be communicated soon. 
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